NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

# NAVAL POSTGRADUATE SCHOOL, Monterey, California



CHANNELS THAT COOPERATIVELY SERVICE A DATA STREAM AND VOICE MESSAGES, II: DIFFUSION APPROXIMATIONS

by

J. P. Lehoczky

and

D. P. Gaver

November 1979

Approved for public release; distribution unlimited.

Preparedfor:NavalResearchFEDDOCS., VAD 208.14/2:NPS-55-79-028

#### Naval Postgraduate School Monterey, California

Rear Admiral T. F. Dedman Superintendent Jack R. Borsting Provost

This report was prepared by:

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION                                                                                      | PAGE                          | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                   |
|-----------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|
| 1. REPORT NUMBER                                                                                          | 2. GOVT ACCESSION NO.         |                                                               |
| NPS55-79-028                                                                                              |                               |                                                               |
| 4 TITLE (and Subtitle)                                                                                    |                               | 5. TYPE OF REPORT & PERIOD COVERED                            |
| Channels that Cooperatively Service a Data<br>Stream and Voice Messages, II: Diffusion                    |                               | Technical                                                     |
| Approximations                                                                                            | JIII USION                    | 6. PERFORMING ORG. REPORT NUMBER                              |
| 7. AUTHOR(s)                                                                                              |                               | 8. CONTRACT OR GRANT NUMBER(s)                                |
| J. P. Lehoczky and D. P. Gaver                                                                            |                               |                                                               |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                               |                               | 10. PROGRAM ELEMENT. PROJECT TASK<br>AREA & WORK UNIT NUMBERS |
| Naval Postgraduate School                                                                                 |                               | 61152N;R000-01-10                                             |
| Monterey, Ca. 93940                                                                                       |                               | N0001480WR0054                                                |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                   |                               | 12. REPORT DATE                                               |
| Chief of Naval Research                                                                                   |                               | November 1979                                                 |
| Arlington, VA 22217                                                                                       |                               | 13 NUMBER OF PAGES                                            |
| 14. MONITORING AGENCY NAME & ADDRESS(If different                                                         | t from Controlling Office)    | 43<br>15. SECURITY CLASS. (of this report)                    |
|                                                                                                           |                               | Unclassified                                                  |
|                                                                                                           |                               |                                                               |
|                                                                                                           |                               | 154. DECLASSIFICATION DOWNGRADING<br>SCHEDULE                 |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                               |                               |                                                               |
| IS. DISTRIBUTION STATEMENT (of this Report)                                                               |                               |                                                               |
|                                                                                                           |                               |                                                               |
| 17. DISTRIBUTION STATEMENT (of the abstract entered )                                                     | In Block 20, If different fro | m Report)                                                     |
|                                                                                                           |                               |                                                               |
| 18 SUPPLEMENTARY NOTES                                                                                    |                               |                                                               |
|                                                                                                           |                               |                                                               |
|                                                                                                           |                               |                                                               |
| 19. KEY WORDS (Continue on reverse side if necessary am                                                   | d identify by block number;   |                                                               |
|                                                                                                           | oice Communicatio             |                                                               |
|                                                                                                           | on Approximation              |                                                               |
| Queues                                                                                                    |                               |                                                               |
| Probability Models                                                                                        |                               |                                                               |
| 20. ABSTRACT (Continue on reverse side if necessary and                                                   | I identify by block number)   |                                                               |
| A system of channels mutually acc<br>having preemptive priority but be<br>to queue. Approximations to the | ing a loss syste              | em, and data being allowed                                    |
|                                                                                                           |                               |                                                               |
|                                                                                                           |                               |                                                               |
| DD FORM 1473 EDITION OF I NOV 65 IS OBSOL                                                                 | FTF                           |                                                               |



#### CHANNELS THAT COOPERATIVELY SERVICE

## A DATA STREAM AND VOICE MESSAGES, II: DIFFUSION APPROXIMATIONS\*

J. P. Lehoczky Carneige-Mellon University Pittsburgh, PA

D. P. Gaver Naval Postgraduate School Monterey, CA

#### 1. INTRODUCTION

In this paper, the study of the behavior of an element of a communication system carrying both data and voice traffic is continued. In a previous paper, Gaver and Lehoczky (1979), a fluid flow approximation was developed to predict the characteristics of the data queue length for such a system. The fluid flow approach applied to the case in which the data service rate, n, was large compared with the voice service rate,  $\mu$ ; for example, when  $n/\mu \sim 10^4$ . In this paper, a different approach is taken: a Wiener process approximation is developed. The accuracy of this approximation depends on the "heavy traffic" assumption, that is that the overall traffic intensity should approach unity from below. One need not make any assumption concerning the individual parameters. It follows that the diffusion approximation complements the fluid flow approximation to give a more complete picture of the behavior of voice-data communication systems.

Research in part sponsored by ONR at Naval Postgraduate School N001480WR00067, and in part by NSF at Carnegie-Mellon University, ENG79 05526.

The communication system to be studied is essentially a part of the SENET network as described by Coviello and Vena (1975) or Barbacci and Oakley (1976). This network employs time-slotted frames. A certain portion of each frame is allocated to voice traffic, while any data traffic can use all remaining capacity including any left unused by voice. The voice traffic cannot use any unused data capacity and operates as a loss system.

We introduce probabilistic assumptions, conventional in many queueing studies. Voice traffic arrives according to a Poisson( $\lambda$ ) process, and each voice customer has an independent exponential(µ) service time. Data arrivals are governed by an independent Poisson( $\delta$ ) process and exhibit independent exponential  $(\eta)$  service times. A total of c channels are reserved for exclusive use of data, while v channels can be used by both data and voice; however, voice pre-empts data. The assumptions imply that voice can be modelled as an M/M/v/v loss system, and the well-known "Erlang B" loss formula will give the loss rate. We focus our attention on the behavior of the data queue and seek to develop expressions for the steady-state distribution and the mean queue length. Many authors have studied such a system, including Halfin and Segal (1972), Halfin (1972), Fischer and Harris (1976), Bhat and Fischer (1976), Fischer (1977), Chang (1977), and Gaver and Lehoczky (1979). Only the latter paper gives approximations valid for the extreme but realistic case in which  $\eta/\mu$  is large, and none give a Wiener approximation.

2

Rather than focus on this simple version of the problem, we wish to provide a somewhat more general analysis. The generalizations arise when one considers more complex voice service. Two types of generalizations are rated here.

In general, voice traffic is unlike data traffic. A voice communication is actually a series of bursts or talkspurts separated by silence. It is reasonable to model a conversation as a two-state Markov chain of alternating talk and silence. Exponential holding times are appropriate for talkspurt and silence lengths, see Brady (1965). During the periods of silence, the voice channel is available for data traffic. This extra channel capacity can serve to allow for increased data utilization, or to reduce the data queue length, or both. The voice process can be described by a Markov chain for which each state provides a description of the number of voice customers requesting service and the number actually using the channel. For each voice state one can compute the number of channels available for data, and thus the data transition rates.

A second generalization allows for the addition of extra voice channels by reducing the quality. One strategy available to provide adequate voice and data capacity is to assign voice users to certain acceptable quality voice channels, say 6 or 8 KBPS. When a specified number of voice users are in the system, new voice users are assigned to less acceptable channels, say with 2 or 4 KBPS. In this way, one has increased the number of voice users that can be serviced at the expense of the guality of the voice

3

transmissions. This situation can also be incorporated into our structure. One again defines voice states: each state provides a description of the voice channels in use. One can specify a generator Q for the Markov process over the states and use it to compute the channel availability for data for each state. To include this and other possible generalizations, we assume that the voice process is a continuous time Markov chain with finite state space and that it subordinates the data queue length process. We will work out formulas for the special case in which the voice is an M/M/v/v queueing system.

#### 2. Diffusion Approximation Approach

We assume that the voice process {V(t),  $t \ge 0$ } can be described by a Markov chain with state space {1,2,...,N}. We let this Markov chain have generator  $Q = (q_{ij})$ , an N × N matrix, and stationary distribution n. An important special case occurs when voice operates as an M/M/v/v loss system in which case

and then  $\pi = (\pi_0, \dots, \pi_v)$  with

$$\pi_{i} = \frac{\rho_{v}^{i}/i!}{\sum_{j=0}^{v} \rho_{v}^{j}/j!}, \qquad \rho_{v} = \frac{\lambda}{\mu}.$$

5

Each voice state i gives a number of channels available for data, say  $c_i$ . From  $c_i$  one can compute the rate,  $r_i$ , at which the data queue increases or decreases. Here  $r_i = \delta - \eta c_i$ . We let

$$R_{\sim} = \begin{pmatrix} r_{1} & O \\ \vdots & \vdots \\ C & r_{N} \end{pmatrix}$$
(2.2)

For stability one requires  $\sum_{i=1}^{N} \pi_i r_i < 0$ . In the special case for which Q is given by (2.1), these conditions become

$$\sum_{i=0}^{v} \frac{\rho_{v}^{i}}{i!} (\delta - (c + v - i)\eta) < 0$$

where data has exclusive use of c channels and the voice has v channels. This condition can be written  $\rho < 1$  where  $\rho = (\rho_d + \rho_v(1-q))/(c+v), \rho_d = \delta/\eta, \rho_v = \lambda/\mu$ , and q is the blocking probability

$$q = \frac{\rho_v^v / v!}{\sum_{j=0}^v \rho_v^j / j!}$$

We develop a Wiener process approximation under a heavytraffic assumption that  $\sum_{i=1}^{N} r_i \pi_i \neq 0$ . This entials finding an appropriate infinitesimal mean and variance. Locally the data queue length process does not resemble a Wiener process. If voice is in state i, the change in the data queue is nearly deterministic and equal to  $r_i$ dt rather than a normally distributed random variable. Nevertheless, if we consider a longer period of time, say [t, t+T] with T large, then the change in queue length will be more reasonably assumed to be normally distributed. The next section contains the outline of a proof that a suitably sealed version of the process converges to a Wiener process. This proof does not require the fluid flow approach of  $\eta/\mu$  large, so a slightly more refined variance term is derived. The Wiener process derived will have a reflecting barrier at 0.

The voice process subordinates the data process; see Feller [ ], pp. for the notion of subordination. If voice is in state V(t), then the data queue is increasing at rate  $r_{V(t)}$  over [0, t + dt]. The expected change over [t, t+T] is given by

$$E \int_{t}^{t+T} r_{V(s)} ds = \int_{t}^{t+T} E(r_{V(s)}) ds = \int_{t}^{t+T} \sum_{i=1}^{N} r_i P(v(s)=i) ds .$$

For the case of T large we can assume V(t) has the stationary distribution, thus V(s) has distribution  $\pi$  for all s. The expected change over [t, t+T] thus becomes T  $\sum_{i=1}^{N} r_i \pi_i$ . Notice that the data queue is very large, so the boundary is not encountered. For a Wiener process, this expected change would be

mT again assuming that the boundary is not encountered. We thus find

$$\mathbf{m} = \sum_{i=1}^{N} \mathbf{r}_{i} \pi_{i} = \pi^{T} \mathbf{R}_{i} \qquad (2.3)$$

We follow a similar method to determine  $\sigma^2$ . The variance in the change in the data queue length over [t, t+T] is given by

$$\operatorname{Var} \int_{t}^{t+T} r_{V(s)} ds$$
.

We again assume V(s) has distribution  $\underline{\pi}$ , so this variance is equal to

$$\operatorname{Var} \int_{0}^{T} r_{V(s)} ds$$
  
=  $E \left( \int_{0}^{T} r_{V(s)} ds \right)^{2} - \left( E \int_{0}^{T} r_{V(s)} ds \right)^{2} = E \left( \int_{0}^{T} r_{V(s)} \right)^{2} - \left( \frac{\pi R l}{2} \right)^{2} T^{2}$ 

The last term can be computed to be

$$E\left(\int_{0}^{T} r_{V(s)} ds\right)^{2} = E \int_{0}^{T} \int_{0}^{T} r_{V(s)} r_{V(t)} ds dt = \int_{0}^{T} \int_{0}^{T} E\left(r_{V(s)} r_{V(t)}\right) ds dt$$
$$= 2 \int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{N} r_{i} P(V(s)=i) E\left(r_{V(t)} | V(s)=i\right) ds dt$$

$$= 2 \int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{N} r_{i} \pi_{i} \sum_{j=1}^{N} r_{j} P(v(t)=j|V(s)=i) ds dt .$$

We let  $p_{ij}(u) = P(V(u)=j|V(0)=i)$  and  $P(u) = (p_{ij}(u))$ . The Kolmogorov forward equations give  $P(u) = \exp(Qu)$  where  $\exp(M) = I + M + M^2/2! + \cdots$  for a square matrix M. One can reexpress the second moment in matrix form as

$$E\left(\int_{0}^{T} r_{V(s)} ds\right)^{2} = 2 \int_{0}^{T} \int_{0}^{t} \pi R \exp(Q(t-s)) R ds dt$$
$$= 2\pi R \int_{0}^{T} \int_{0}^{t} \exp(Qu) du dt R dt$$

In view of the fact that Q is singular, one can most easily carry out the required integration by introducing the eigenvalue decomposition  $Q = \Phi D \Psi$  with



a diagonal matrix of eigenvalues,

$$\underline{\Phi} = (\underline{1}, \underline{\psi}_2, \ldots, \underline{\psi}_N), \qquad \underline{\Psi} = (\underline{\pi}, \underline{\psi}_2, \ldots, \underline{\psi}_N)^T ,$$

the associated right- and left-eigenvectors. Here  $\Phi \Psi = \Psi \Phi = I$ . Since Q is irreducible and finite  $\theta_i$  has a negative real part for  $2 \leq i \leq N$ . It follows that

with  $\alpha_i = \theta^{-i} (\theta^{-i} (e^{\theta_i T} - 1))$ . Since  $\theta_i$  has a negative real part  $\alpha_i \sim -T/\theta_i$  as  $T \neq \infty$ . For large T, the second moment can be written approximately as



thus the variance is given by

The first and last terms cancel to give

For a Wiener process, this variance would be given by  $T\sigma^2$ . We let

$$Q^{-} = \Phi \begin{pmatrix} 0 & & & \\ \theta_{2}^{-1} & & \\ & \ddots & \\ & & \ddots & \\ & & & \theta_{N}^{-1} \end{pmatrix} \overset{\Psi}{\sim}$$
(2.5)

so Q is a reflexive generalized inverse of Q obtained by reciprocating nonzero eigenvalues. We note that both QQ Q = Q and Q QQ = Q hold, thus we write

$$\frac{\sigma^2}{2} = -\pi^T \frac{RQ}{c} \frac{Rl}{c}$$

$$m = \pi^+ \frac{Rl}{c} < 0 .$$

$$(2.6)$$

The crucial parameter  $2m/\sigma^2$  can thus be calculated.

We illustrate the formulas in (2.6) for the special case where Q is given by (2.1). For this case

 $= \frac{1}{\mu} \mathbb{Z}^{T} \mathbb{R} \mathbb{S}^{-} (\mathbb{R} - \mathbb{M} \mathbb{I}) \mathbb{I} + \frac{\mathbb{M}}{\mu} \mathbb{Z}^{T} \mathbb{R} \mathbb{S}^{-} \mathbb{I} .$ 

For our choice of  $s_{1}^{-}$ ,  $s_{2}^{-}$ ,  $s_{2}^{-}$ , thus

$$\frac{\sigma^2}{2} = \frac{1}{\mu} \underset{\sim}{\pi} \frac{\pi^T RS}{K} (R - mI) = \frac{1}{\mu} \underset{\sim}{\pi} \frac{\pi^T RS}{K} y$$

where y = (R - mI). We note that  $\pi^T y = 0$ , so if z = S y, then Sz = y is a consistent set of equations and  $\pi^T z = 0$ .

In general one can solve (2.6) by direct calculation of  $Q^{-}$ ; however, this is rarely possible. A second approach is to solve  $Qz = \chi$  subject to  $\pi^{T}z = Q$ . For Q of form (2.1), this can be carried out. The equations become

$$\rho_{v}(z_{i} - z_{i-1}) - (i-1)(z_{i-1} - z_{i-2}) = r_{i-1} - m, 1 \le i \le v$$
$$-v(z_{v} - z_{v-1}) = r_{n} - m$$
(2.7)
$$\sum_{i=0}^{v} \frac{\rho_{v}^{i}}{i!} z_{i} = 0.$$

One can easily find

$$z_{k} - z_{k-1} = \frac{\sum_{j=0}^{k-1} \pi_{j}(r_{j} - m)}{\frac{\rho_{v}\pi_{k-1}}{\rho_{v}}}.$$

We define

$$T_{k} = \sum_{j=0}^{k} \pi_{j}(r_{j} - m).$$

Thus  $T_v = 0$  and  $z_k - z_{k-1} = T_{k-1}/\rho_v \pi_{k-1}$ . Moreover

$$z_{k} = z_{0} + \sum_{j=1}^{k} z_{j} = z_{0} + \sum_{j=1}^{k} \frac{T_{j-1}}{\rho_{v}\pi_{j-1}}$$

The  $\sum_{i=0}^{v} \pi_i z_i = 0$  condition gives

$$z_0 = -\sum_{k=1}^{v} \pi_k \sum_{j=1}^{k} \frac{T_{j-1}}{\rho_v \pi_{j-1}}$$

The vector  $\underset{\sim}{z}$  has now been explicitly determined, and it remains to compute

$$\frac{1}{\mu} \underset{\sim}{\pi}^{\mathrm{T}} \underset{\sim}{\mathrm{Rz}} = \frac{1}{\mu} \underset{\sim}{\pi}^{\mathrm{T}} \underset{\sim}{\pi} (z_0 \underset{\sim}{1} + (0, u_1, \ldots, u_v))$$

with

$$u_{k} = \sum_{j=1}^{k} \frac{T_{j-1}}{\rho_{v} T_{j-1}} .$$

We find

$$\frac{1}{\mu} \pi^{T} R z = -\frac{m}{\mu} z_{0} + \frac{1}{\mu} \sum_{k=1}^{V} \pi_{k} r_{k} \sum_{i=1}^{k} \frac{T_{i-1}}{\rho_{v} \pi_{i-1}}$$

$$= \frac{1}{\mu} \sum_{k=1}^{V} \pi_{k} (r_{k} - m) \sum_{i=1}^{k} \frac{T_{i-1}}{\rho_{v} \pi_{i-1}}$$

$$= \frac{1}{\mu} \sum_{i=1}^{V} \frac{T_{i-1}}{\rho_{v} \pi_{i-1}} \sum_{k=i}^{V} \pi_{k} (r_{k} - m) = \frac{1}{\mu} \sum_{i=1}^{V} \frac{T_{i-1}}{\rho_{v} \pi_{i-1}} \left( -\frac{\sum_{k=0}^{i-1} \pi_{k} (r_{k} - m) \right)$$

$$= \frac{m^{2}}{\mu} \sum_{i=1}^{V} \frac{m^{2}}{\rho_{v} \pi_{i-1}} \sum_{k=i}^{V} \pi_{k} (r_{k} - m) = \frac{1}{\mu} \sum_{i=1}^{V} \frac{T_{i-1}}{\rho_{v} \pi_{i-1}} \left( -\frac{\sum_{k=0}^{i-1} \pi_{k} (r_{k} - m) \right)$$

$$= -\frac{1}{\mu} \sum_{i=1}^{V} \frac{T_{i-1}}{\rho_{v}\pi_{i-1}} = -\frac{1}{\mu} \sum_{i=0}^{V-1} \frac{T_{i}}{\rho_{v}\pi_{i}}.$$

We thus derive

=

$$\frac{\sigma^2}{2} = \frac{1}{\mu} \sum_{i=0}^{\nu-1} \frac{T_i^2}{\nu_i} , \quad T_i = \sum_{j=0}^{i} \pi_j (r_j - m)$$
(2.8)

For the special case considered  $r_j = S - (c+v-j)\eta = \eta (\rho_d - (c+v) + j)$ . One finds

$$m = \sum_{i=0}^{v} \eta(\rho_d - (c+v)+j) \frac{\rho_v^j}{j!s_v}$$

= 
$$\eta [\rho_d - (c+v) + \rho_v (1-q)]$$

where  $q = \rho_V^V / v! S_V$  is the blocking probability. Thus m =  $-\eta (c+v) (1-\rho)$ . Plugging into (2.8) we find

$$\frac{\sigma^2}{2} = \frac{\eta^2}{\rho_v^{\mu}} \sum_{i=0}^{v-1} \frac{\left(\sum_{j=0}^{i} \frac{\rho_v^{j}}{j!} \left[\rho_d - (c+v)\rho + j\right]\right)^2}{s_v \rho_v^{i} / i!}$$

This can be simplified by letting  $q_i = \rho_v^i/i!S_i$ , the blocking probability for an M/M/i/i system with traffic intensity  $\rho_v$ . We find

$$\frac{\sigma^2}{2} = \frac{\eta^2 \rho_v}{\mu} \sum_{i=0}^{v-1} \frac{s_i}{s_v} \frac{(q_i - q_v)^2}{q_i} , \qquad s_i = \sum_{j=0}^{i} \frac{\rho_v^j}{j!} . \qquad (2.9)$$

The special case v = 1 gives

$$\frac{\sigma^2}{2} = \frac{\eta^2}{\mu} \frac{\rho_v}{(1 + \rho_v)^2}$$

We thus have given explicit formulas for the infinitesimal mean and variance of a Wiener process with reflecting barrier at 0. One can therefore use standard results for Wiener processes with reflecting barriers to derive the stationary distribution--it will be exponential with parameter  $2m/\sigma^2$ . The stationary mean queue length will thus be  $\sigma^2/2m$ ; where  $\sigma^2$  and m are given by (2.6) and (2.8). For example when v = 1 and c = 0

$$\frac{\sigma^2}{2m} = \frac{\eta}{\mu} \frac{\rho_v}{(1-\rho)(1+\rho_v)^3}$$

This is developed under heavy traffic conditions, i.e.,  $\rho \neq 1$ . For such conditions

 $\rho_d + \frac{\rho_v}{1 + \rho_v} \rightarrow 1$ 

or

$$\left| \rho_{d} - \frac{1}{1 + \rho_{v}} \right| \rightarrow 0$$

It follows that the above expression is also

$$\frac{\eta}{\mu} \frac{\rho_v \rho_d}{(1-\rho) (1+\rho_v)^2}$$

in agreement with Fischer (1977) and Gaver and Lehoczky (1979).

The characterization of the data queue as a Wiener process with reflecting barrier allows one to discuss the dynamics of the data queue. For example, suppose the data queue is at level x at time t where x is large. One might wish to study the time that elapses until the queue becomes empty. This is the duration of a busy period started at x, and corresponds to a first-passage time for a Wiener process which we denote by  $t_x$ . Moreover one might also be interested in the area beneath the sample path until it reaches the boundary of Q, since this area gives the total time waited by all customers involved in the busy period. We let this area be A(x) and seek to compute  $t_x = E(T_x)$  and a(x) = E(A(x)). Straightforward backward equation or martingale arguments give

16

$$t_x = -x/m$$
  
a(x) =  $-\frac{x^2}{2m} + \frac{\sigma^2}{2m^2} x$ 

where m is negative, and m and  $\sigma^2$  are given earlier. The distribution of the first passage time can also be easily calculated; however, its Laplace transform is most convenient to find and is given by

$$E(e^{-ST}x) = \exp\left[\left(\frac{x}{\sigma}\right) - \left(\frac{m}{\sigma}\right) - \sqrt{\left(\frac{m}{\sigma}\right)^2 + 2s}\right]$$
(2.11)

(2.10)

### 4. A Refined Diffusion Approximation

In this section we continue the development of a diffusion approximation for the data queue length process. The analysis is patterned after the important semigroup methods of Burman [1979]. One develops a sequence of Markov processes and studies the behavior of their generators. One shows that the generators converge and hence concludes that the associated semi-groups converge. This entails the convergence of the finite dimensional distributions. The limiting finite dimensional distributions will be those of a certain Brownian motion. The theory underlying this approach is based on theorems of Trotter and Kato, Kurtz and Burman; the reader is referred to Burman (1979) for technical details. We will illustrate the approach in the context of the special case v = 1, c = 0. The method applies to the case of general c and v but the details are not given here.

Let  $\{V(t), t \ge 0\}$  be the voice process, a Markov process with state space  $\{0,1\}$ . Let N(t) be the data system size at time t. We study the sequence of Markov processes  $\langle \{(X_n(t), V_n(t)), t \ge 0\} \rangle_{n=1}^{\infty}$  where

$$X_{n}(t) = N(nt) / \sqrt{n}$$
 and  $V_{n}(t) = V(nt)$ . (3.1)

The generator of this bivariate process is easy to compute since  $V_n(t)$  subordinates  $X_n(t)$ . Let f(x,k) be a function with domain  $[0,\infty) \times \{0,1\}$  which is smooth as a function of x for each k = 0,1. The generator is given by

18

$$A_{n}f(x,k) = \begin{cases} \delta n[f(x + 1/\sqrt{n}, k) - f(x,k)] \\ + (1-k)\eta n[f(x - 1/\sqrt{n}, k) - f(x,k)] + nQf(x,k) \\ for \quad x \ge 1/\sqrt{n} \end{cases}$$
(3.2)  
$$\delta n[f(1/\sqrt{n}, k) - f(0,k)] + nQf(0,k) \\ for \quad x = 0 .$$

where Q is the generator of the M/M/1/1 voice process and is given by (2.1).

Next expand in a Taylor series and collect terms to rewrite (3.2) as

$$A_{n}f(x,k) = \begin{cases} nQf(x,k) + \sqrt{n} f_{x}(x,k) (\delta - (1-k)\eta) \\ + \frac{1}{2} f_{xx}(x,k) (\delta + (1-k)\eta) + o(1) \\ for x \ge 1/\sqrt{n} \end{cases}$$

$$(3.3)$$

$$nQf(0,k) + \sqrt{n} f_{x}(0,k)\delta + \frac{1}{2} f_{xx}(x,k)\delta + o(1) \\ for x = 0 \end{cases}$$
where  $f_{x}(x,k) = \frac{\partial}{\partial x} f(x,k)$  and  $f_{xx}(x,k) = \frac{\partial^{2}}{\partial x} f(x,k)$ .

We wish to let  $n \rightarrow \infty$  and focus attention on the data queue process alone. To derive a diffusion limit for the data

queue process alone, we introduce a sequence of functions  $\langle f_n(x,k) \rangle_{n=1}^{\infty}$  for which  $f_n(x,k) \neq f(x)$ , where f is a smooth function satisfying f'(0) = 0. We wish to study the limiting behavior of  $A_n f_n(x,k)$ . Let

$$f_n(x,k) = f(x) + \frac{1}{\sqrt{n}} g(x,k) + \frac{1}{n} h(x,k)$$

where g and h are smooth. Clearly  $f_n(x,k) \neq f(x)$ . Substitution in (3.3) gives

$$A_{n}f_{n}(x,k) = \begin{cases} nQf(x) + \sqrt{n}[Qg(x,k) + f'(x)(\delta - (1-k)\eta)] \\ + [Qh(x,k) + g_{x}(x,k)(\delta - (1-k)\eta) + \frac{1}{2}f''(x)(\delta + (1-k)\eta)] \\ & x \ge 1/\sqrt{n} \qquad (3.4) \\ nQf(0) + \sqrt{n}[Qg(0,k) + f'(0)\delta] \\ + [Qh(0,k) + g_{x}(0,k)\delta + \frac{1}{2}f''(0)(\delta)] \qquad x = 0 . \end{cases}$$

We first note that Qf(x) = 0 since Q operates on the voice or k component only, not on the data. This eliminates the first terms nQf(x) and nQf(0). We next examine the  $Qg(x,k) + f'(x)(\delta - (1-k)\eta)$  term. This can be rewritten as

 $Qg(x,k) + f'(x) [\delta - (1-k)\eta - ((\delta - \eta) + \delta \rho_v)/(1 + \rho_v)$ 

+ f'(x)((
$$\delta - \eta$$
) +  $\delta \rho_{v}$ )/(l +  $\rho_{v}$ )  
= Qg(x,k) + f'(x)  $\left[ - \frac{\rho_{v}}{1 + \rho_{v}} + k \right] = f'(x) \eta(1-\rho)$ 

We now select the function g(x,k) so that

$$Qg(\mathbf{x},\mathbf{k}) = -\mathbf{f}'(\mathbf{x}) \left[ -\frac{\rho_{\mathbf{v}}}{1+\rho_{\mathbf{v}}} + \mathbf{k} \right] \eta$$

The function g(x,k) must satisfy the equations

$$\lambda (g(x,1) - g(x,0)) = f'(x) \frac{\eta \rho_{v}}{1 + \rho_{v}}$$

$$(3.5)$$

$$-\mu (g(x,1) - g(x,0)) = -f'(x) \frac{\eta}{1 + \rho_{v}}$$

The above equations are consistent and redundant, thus any g(x,k) for which

$$g(x,1) - g(x,0) = \frac{f'(x)\eta}{\mu(1 + \rho_v)}$$

will suffice. We select

$$g(x,0) = \frac{1}{2} f'(x)$$

$$g(x,1) = (\frac{1}{2} + \frac{\eta}{\mu(1 + \rho_{v})}) f'(x) \qquad (3.6)$$

or

$$g(x,k) + (\frac{1}{2} + \frac{\eta k}{\mu(1 + \rho_v)}) f'(x)$$

This choice of g gives

$$A_{n}f_{n}(x,k) = \begin{cases} -\sqrt{n} \eta (1-\rho) f'(x) + [Qh(x,k) + \left(\frac{1}{2} + \frac{\eta k}{\mu (1+\rho_{v})}\right) f''(x) (\delta - (1-k) \eta) \\ + \frac{1}{2} f''(x) (\delta + (1-k) \eta) ], & x \ge 1/\sqrt{n} \\ \sqrt{n} \left( f'(0)\delta + f'(0) \frac{\eta (\rho_{v} - k (1+\rho_{v})}{\mu (1+\rho_{v})} \right) \\ + \left[ Qh(0,k) + \left(\frac{1}{2} + \frac{\eta k}{\mu (1+\rho_{v})}\right) f''(0)\delta + \frac{1}{2} f''(0)\delta \right] \\ x = 0 \end{cases}$$

Equation (3.7) can be rewritten recalling f'(0) = 0 as

$$A_{n}f_{n}(x,k) = \begin{cases} -\sqrt{n} \eta(1-\rho)f'(x) + \left[Qh(x,k) + \eta f''(x)\right] \left\{ \frac{1}{2} + \frac{\eta k}{\mu(1+\rho_{v})} (\rho_{d}-(1-k)) + \frac{1}{2} (\rho_{d} + (1-k))\right\} \right\} + o(1), \quad x \ge 1/\sqrt{n} \\ (3.8)$$

$$Qh(0,k) + \eta f''(0) \left[\rho_{d} \frac{1}{2} + \frac{\eta k}{\mu(1+\rho_{v})} + \frac{1}{2} \rho_{d}\right], \quad x = 0$$

or

$$A_{n}f_{n}(x,k) = \begin{cases} -\sqrt{n} \eta(1-\rho) f'(x) + \left[ \Omega h(x,k) + f''(x) \eta \cdot \rho_{d} \left( 1 + \frac{\eta k}{\mu(1+\rho_{v})} \right) \right] + o(1) \\ x \ge 1/\sqrt{n} \end{cases}$$

$$(3.9)$$

$$Qh(0,k) + f''(0) \eta \rho_{d} \left( 1 + \frac{\eta k}{\mu(1+\rho_{v})} \right) + o(1), \quad x = 0$$

We rewrite

$$Qh(x,k) + f''(x)\eta\rho_d + \left(\frac{\eta_k}{\mu(1+\rho_v)}\right)$$

as

$$\phi h(\mathbf{x},\mathbf{k}) + f'(\mathbf{x}) \frac{\eta^2 \rho_d}{\mu (1+\rho_v)} \left(\mathbf{k} - \frac{\rho_v}{1+\rho_v}\right) + f''(\mathbf{x}) \eta \rho_d \left(\frac{\eta \rho_v}{\mu (1+\rho_v)^2} + 1\right)$$

and choose h(x,k) so that

$$Qh(x,k) = -f''(x) \frac{\eta^2 \rho_d}{\mu(1+\rho_v)} \left(k - \frac{\rho_v}{1+\rho_v}\right)$$

The function h(x,k) must satisfy

$$\lambda(h(x,1) - h(x,0)) = f''(x) \frac{\eta^2 \rho_d \rho_v}{\mu(1 + \rho_v)^2}$$

(3.10)

$$-\mu(h(x,1) - h(x,0)) = -f''(x) \frac{\eta^2 \rho_d}{\mu(1+\rho_v)^2}$$

These equations are consistent and redundant so a manifold of solutions are possible. Any one will suffice. This choice of h(x,k) allows one to rewrite (3.9) as

$$A_{n}f_{n}(x,k) = \begin{cases} -\sqrt{n} \eta (1-\rho) f'(x) + f''(x) \eta \rho_{d} \left(\frac{\eta \rho_{v}}{\mu (1+\rho_{v})^{2}} + 1\right) + o(1) \\ x \ge 1/\sqrt{n} \\ f''(0) \eta \rho_{d} \left(\frac{\eta \rho_{v}}{\mu (1+\rho_{v})^{2}} + 1\right) + o(1) \end{cases}$$
(3.11)

We now let  $n \neq \infty$ . In order for (3.11) to converge to a sensible limit, we must invoke the heavy traffic approximation, that  $\rho \neq 1$ . Specifically we let  $\rho = \rho_n = 1 - (\theta/\sqrt{n})$  for some  $\theta > 0$ . Equation (3.11) becomes in the limit

$$A_{n}f_{n}(x,k) \longrightarrow \begin{cases} -\eta\theta f'(x) + f''(x)\eta\rho_{d}\left(\frac{\eta\rho_{v}}{\mu(1+\rho_{v})^{2}} + 1\right), & x > 0 \\ f''(0)\eta\rho_{d}\left(\frac{\eta\rho_{v}}{\mu(1+\rho_{v})^{2}} + 1\right), & x = 0 \quad (3.12) \\ f''(0) = 0 \end{cases}$$

This is the generator of a Wiener process with reflecting barrier at 0, drift of  $-\eta\theta$ , and

$$\frac{\sigma^2}{2} = \eta \rho_d \left( \frac{\eta \rho_v}{\mu (1 + \rho_v)^2} + 1 \right)$$

.

The stationary distribution for such a process is an exponential

distribution with parameter

$$\frac{1}{\rho_{d}}\left(\frac{\eta \rho_{v}}{\mu(1+\rho_{v})^{2}}+1\right)$$

thus the mean queue length is given by

$$\frac{\rho_{d}}{\theta} \left( \frac{\eta \rho_{v}}{\mu \left(1 + \rho_{v}\right)^{2}} + 1 \right) .$$

It is informative to try to apply this heavy traffic result to a case in which  $\rho$  is near but less than 1. One might replace  $\theta$  by  $\sqrt{n}$  (1- $\rho$ ). Since we have scaled by  $\sqrt{n}$ , the stationary distribution of N(t), the unscaled queue length should be approximately exponential with parameter

$$\frac{(1-\rho)}{\rho_{d}\left(\frac{\eta\rho_{v}}{\mu(1+\rho_{v})^{2}}+1\right)}$$

The mean queue length becomes

$$\frac{\rho_{d}}{1-\rho} \left( \frac{\eta \rho_{v}}{\mu (1+\rho_{v})^{2}} + 1 \right)$$

This result is in exact agreement with Fischer (1977) and is therefore exact. The fluid flow approximation treats  $\eta/\mu$  as being large, hence  $[\eta \rho_v/\mu (1+\rho_v)^2]$  is assumed to dominate 1. This gives  $(\eta \rho_d \rho_v)/[\mu (1+\rho_v)^2 (1-\rho)]$  as the fluid flow mean queue length found in Gaver and Lehoczky (1979) and in Section 2 of this paper. The diffusion approximation thus found represents a refinement of the fluid flow diffusion approximation. Even if  $\eta/\mu$  is large,  $\rho_{\mu}$  may be small, so the 1 may be important.

Once the Wiener process infinitesimal drift and variance have been found, one can also use the dyanmics of the Wiener process to model the dynamics of the data queue process. Busy period distributions, areas, and transient behavior in general can be determined.

#### BIBLIOGRAPHY

Barbacci, M. R. and Oakley, J. D. (1976). "The integration of Circuit and Packet Switching Networks Toward a SENET Implementation," 15th NBS-ACM Annual Technique Symposium.

Bhat, U. N. and Fischer, M. J. (1976). "Multichannel Queueing Systems with Heterogeneous Classes of Arrivals," <u>Naval Research</u> Logistics Quarterly 23

Brady, P. T. (1967). "A Statistical Analysis of On-Off Patterns in 16 Conversations." Bell S.T.J., 73-91.

Burman, D. Y. (1979). "An Analytic Approach to Diffusion Approximations in Queueing." Ph.D. Dissertation, New York University.

Chang, Lih-Hsing (1977). "Analysis of Integrated Voice and Data Communication Network," Ph.D Dissertation, Department of Electrical Engineering, Carnegie-Mellon University, November.

Coviello, G. and Vena, P. A. (1975). "Integration of Circuit/ Packet Switching in a SENET (Slotted Envelop NETwork) Concept," National Telecommunications Conference, New Orleans, December, pp. 42-12 to 42-17.

Fischer, M. J. (1977a). "A Queueing Analysis of an Integrated Telecommunications System with Priorities," INFOR 15

Fischer, M. J. (1977b). "Performance of Data Traffic in an Integrated Circuit- and Packet-Switched Multiplex Structure," DCA Technical Report.

Fischer, M. J. and Harris, T. C. (1976). "A Model for Evaluating the Performance of an Integrated Circuit- and Packet-Switched Multiplex Structure," IEEE Trans. on Comm., Com-24 February.

Halfin, S. (1972). "Steady-state Distribution for the Buffer Content of an M/G/l Queue with Varying Service Rate," SIAM J. Appl. Math., 356-363.

Halfin, S. and Segal, M. (1972). "A Priority Queueing Model for a Mixture of Two Types of Customers," <u>SIAM J. Appl. Math.</u>, 369-379.

27

#### INITIAL DISTRIBUTION LIST

| Number | of  | Copies |
|--------|-----|--------|
| number | OT. | CODICS |

| Defense Documentation Center<br>Cameron Station<br>Alexandria, VA 22314                                                                                                                                                                                                                         | 2                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Library Code<br>Code 0142<br>Naval Postgraduate School<br>Monterey, CA 93940                                                                                                                                                                                                                    | 2                                                         |
| Library Code 55<br>Naval Postgraduate School<br>Monterey, Ca. 93940                                                                                                                                                                                                                             | 1                                                         |
| Dean of Research<br>Code 012A<br>Naval Postgraduate School<br>Monterey, Ca. 93940                                                                                                                                                                                                               | 1                                                         |
| <pre>Attn: A. Andrus, Code 55<br/>D. Gaver, Code 55<br/>D. Barr, Code 55<br/>P. A. Jacobs, Code 55<br/>P. A. W. Lewis, Code 55<br/>P. Milch, Code 55<br/>R. Richards, Code 55<br/>R. G. Sovereign, Code 55<br/>R. J. Stampfel, Code 55<br/>R. R. Read, Code 55<br/>J. Wozencraft, Code 74</pre> | 1<br>25<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Mr. Peter Badgley<br>ONR Headquarters, Code 102B<br>800 N. Quincy Street<br>Arlington, VA 22217                                                                                                                                                                                                 | 1                                                         |
| Dr. James S. Bailey, Director<br>Geography Programs,<br>Department of the Navy<br>ONR<br>Arlington, VA 93940                                                                                                                                                                                    | 1                                                         |
| Prof. J. Lehoczky<br>Dept. of Statistics<br>Carnegie Mellon University<br>Pittsburgh, PA. 15213                                                                                                                                                                                                 | 5                                                         |

| DISTRIBUTIO                                                                                                             |                                                                                                  | of Copies |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|
| STATISTICS AND PREBABILITY<br>CFFICE OF NAVAL RESEARCH                                                                  |                                                                                                  | 1         |
| COEE 436<br>AFLINGTUN<br>VA                                                                                             | 22217                                                                                            |           |
| CFFICE OF NAVAL RESEARCH<br>NEW YORK AREA CEFICE<br>715 BRDACWAY - ETH FLOOR<br>ATTN: CR. ROBER GRAFTCN<br>NEW YORK, NY | 10003                                                                                            | 1         |
| DIRECTOR<br>CFFICE OF NAVAL RESEARCH ER<br>536 SCUTH CLAFK STREET<br>ATTN: DEPUTY AND CHIEF SCIE<br>CHICAGO, IL         | ANCH OFF<br>ENTIST<br>60605                                                                      | 1         |
| LIERARY<br>NAVAL OCEAN SYSTEMS CENTER<br>SAN DIEGO<br>CA                                                                | 92152                                                                                            | 1         |
| NAVY LIBRAFY<br>NATIONAL SPACE TECHNOLOGY LA<br>ATTN: NAVY LIERARIAN<br>BAY ST. LGUIS<br>MS                             | 9<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | 1         |
| NAVAL ELECTRONIC SYSTEMS COM<br>NAVELEX 32C<br>NATIONAL CENTER NO. 1<br>ARLINGTON<br>VA 2                               | IMAND<br>0360                                                                                    | 1         |
| DIFECTOR NAVAL REAEARCH LAEC<br>ATTN: LIERARY (DURL)<br>CODE 2025<br>WASHINGTON, C.C.                                   | RATORY<br>0375                                                                                   | 1         |
| TECHMICAL INFORMATION CIVISIONAVAL RESEARCH LABORATORY<br>WASHINGTON, D. C.                                             |                                                                                                  | 1         |
| 20                                                                                                                      | 0375                                                                                             |           |

.

4

| PRCF. C. R. BAKER<br>DEPARTMENT CH STATISTICS<br>UNIVERSITY OF NOTRH CAFCLINA<br>CHAPEL HILL,<br>NOFTH CARGLINA<br>27514              | 1 |
|---------------------------------------------------------------------------------------------------------------------------------------|---|
| PRCF. R. E. DECHHOFER<br>CEPARTMENT OF OPERATIONS RESEARCH<br>CORNELL UNIVERSITY<br>ITHACA<br>NEW YORK 14850                          | 1 |
| FRCF. N. J. BERSHAC<br>SCHOOL OF ENCINEERING<br>UNIVERSITY OF CALIFORNIA<br>IRVINE<br>CALIFORNIA<br>92664                             | 1 |
| P. J. BICKEL<br>DEPARTMENT OF STATISTICS<br>UNIVERSITY OF CALIFORNIA<br>BERKELEY, CALIFORNIA<br>54720                                 | 1 |
| FFOF. F. W. BLOCK<br>DEPARTHENT OF MATHEMATICS<br>UNIVERSITY OF PITTSBURGH<br>FITTSBURGH<br>FA 15260                                  | 1 |
| PROF. JOSEPH BLUM<br>DEPT. OF MATHEMATICS, STATISTICS<br>AND COMPLTER SCIENCE<br>THE AMERICAN UNIVERSITY<br>WASHINGTON<br>CC 20016    | 1 |
| PROF. R. A. BRADLEY<br>DEFARTMENT OF STATISTICS<br>FLORIDA STATE UNIVERSITY<br>TALLAHASSEE , FLORIDA 32306                            | 1 |
| FROF. R. E. BARLOW<br>OPERATIONS RESEARCH CENTER<br>COLLEGE OF FRGINGERING<br>UNIVERSITY OF CALIFORNIA<br>BERKLEY<br>CALIFORNIA 94720 | 1 |
| MR. C. N EENNETT<br>NAVAL COASTAL SYSTEMS LAECRATORY<br>CCUI PICI<br>FANAMA CITY,<br>FLORIDA<br>32401 30                              | 1 |

.

| PRCF. L. N. PHAT<br>COMPUTER SCIENCE / OPERATIONS<br>RESEARCH CENTER<br>SOUTHERN METHODIST UNIVERSITY<br>DALLAS<br>TEXAS 75275                                     | .1  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| FROF. W. R. ELISCHKE<br>DEPT. OF GUANTITATIVE<br>BUSINESS ANALYSIS<br>UNIVERSITY OF SOUTHERN CALIFORNIA<br>LOS ANGELES, CALIFORNIA<br>90007                        | 1   |
| CR. DERRILL J. BERDELON<br>NAVAL UNEEFWATER SYSTEMS CENTER<br>CODE 21<br>NEWPORT<br>RI<br>02840                                                                    | 1   |
| J. E. BOYER JR<br>DEPT. OF STATISTICS<br>SOUTHERN METHODIST UNIVERSITY<br>DALLAS<br>TX<br>75275                                                                    | 1   |
| DR. J. CHANDRA<br>U. S. ARMY RESEARCH<br>F. G. EOX 12211.<br>RESEARCH TRIANGLE PARK<br>NUFTH CARCLINA<br>27706                                                     | l   |
| FRGE. F. CHERNOFF<br>DEPT. OF MATHEMATICS<br>MASS INSTITUTE OF TECHNOLOGY<br>CAMBRIDGE.<br>MASSACHUSETTS 02139                                                     | . 1 |
| PFOF. C. CERMAN<br>DEFARTMENT OF CIVIL ENGINEERING<br>AND ENGINEERING MECHANICS<br>COLUMEIA UNIVERSITY<br>NEW YORK<br>NEW YORK<br>10027                            | 1   |
| PRCF. R. L. DISNEY<br>VIRGINIA POLYTECHNIC INSTITUTE<br>AND STATE UNIVERSITY<br>DEFT. CF INCUSTRIAL ENGINEERING<br>AND OPERATIONS RESEARCH<br>ELACKSEURE, VA 24061 | 1   |

#### DISTRIBUTION LIST

MR. GENE F. GLEISSNER AFFLIED MATHEMATICS LABORATORY CAVID TALLOR NAVAL SHIP RESEARCH AND DEVELOFMENT CENTER BETHESDA 1 **D**M 20084 PROF. S. S. GUPTA DEPARTMENT OF STATISTICS PURCUE UNIVERSITY LAFAYETTE INDIANA 47907 1 FROF. C. L. HANSON DEPT OF MATH. SCIENCES STATE UNIVERSITY OF NEW YORK, BINGHAMTON BINGHAMTON 1 NY 13901 1 Prof. M. J. Hinich Dept. of Economics Virginia Polytechnica Institute and State University Blacksburg, VA 24061 1 Dr. D. Depriest, ONR, Code 102B 800 N. Quincy Street Arlington, VA 22217 1 Prof. G. E. Whitehouse Dept. of Industrial Engineering Lehigh University Bethlehem, PA 18015 1 Prof. M. Zia-Hassan Dept. of Ind. & Sys. Eng. Illinois Institute of Technology Chicago, IL 60616 Prof. S. Zacks 1 Statistics Dept. Virginia Polytechnic Inst. Blacksburg, VA 24061 Head, Math. Sci Section 1 National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550

No. of Copies

| Dr. H. Sittrop<br>Physics Lab., TNO<br>P.O. Box 96964<br>2509 JG, The Hague<br>The Netherlands                                               | ١ |
|----------------------------------------------------------------------------------------------------------------------------------------------|---|
| DR. R. ELASHOFF<br>BIOMATHEMATICS<br>UNIV. CF CALIF.<br>LCS ANGELES<br>CALIFORNIA<br>90024                                                   | 1 |
| PROF. GECRGE S. FISHMAN<br>UNIV. CF NORTH CARGLINA<br>CUR. IN CR AND SYS. ANALYSIS<br>PHILLIFS ANNEX<br>CHAPEL HILL, NORTH CARCLINA<br>20742 | 1 |
| DR. R. GNANACESIKAN<br>EELL TELEPHONE LAB<br>HOLPDEL, N. J. 07733                                                                            | 1 |
| DR. A. J. GCLEMAN<br>CHIEF, GR<br>DIV. 2C5.C2, ADMIN. A428<br>U.S. DEPT. CF COMMERCE<br>WASHINGTON, E.C.<br>20234                            | ì |
| DR. H. FIGGINS<br>53 BONN 1, POSTFACH 585<br>NASSESTRASSE 2<br>WEST GERMANY                                                                  | 1 |
| DR. P. T. HOLMES<br>DEPT. OF MATH.<br>CLEMSON UNIV.<br>CLEMSON<br>SCUTH CAROLINA                                                             | 1 |
| 29631<br>Dr. J. A. Hocke                                                                                                                     | 1 |
| Bell Telephone Labs<br>Whippany, New Jersey 07733                                                                                            |   |
| Dr. RobertHooke<br>Box 1982<br>Pinehurst, No. Carolina 28374                                                                                 | 1 |

| LR. D. L. IGLEFART<br>DEPT. CF C.F.<br>STANFCRD UNIV:<br>STANFCRD UNIV:<br>CALIFERNIA                   | 94305 | 1 |
|---------------------------------------------------------------------------------------------------------|-------|---|
| Dr. D. Trizna, Mail Code 5323<br>Naval Research Lab<br>Washington, D.C. 20375                           | •     | 1 |
| Dr. E. J. Wegman,<br>ONR, Cdoe 436<br>Arlington, VA 22217                                               |       | J |
| DR. H. KOBAYASHI<br>JBH<br>NCEKTCHN HEIGHTS<br>NEW YORK                                                 | 10598 | 1 |
| CR. JOHN LEHOCZKY<br>STATISTICS DEPARTMENT<br>CARNEGIC-MELLON UNIVERSITY<br>PITTS BURGH<br>PENNSYLVANIA | 15213 | 1 |
| DR. A. LEMOINE<br>1020 guinca ST.<br>Falo altc.<br>California                                           | 94301 | 1 |
| DR. J. MACCUSEN<br>UNIV. CF CALIF.<br>LOS ANGELES<br>CALIFORNIA                                         |       | 1 |
| FROF. K. T. MARSHALL<br>DEFT. OF OF<br>NAVAL POSTGRACUATE SCHOOL<br>MONTEREY                            | 90024 | 1 |
| CALIFERNIA<br>DR. M. MAZUMEAR<br>MATH. DEPT.<br>ESTINGHOUSE RES. LABS<br>CHURCHILL BEFE                 | 53940 | 1 |
| FITTSULRGH<br>PENNSYLVANIA                                                                              | 15235 |   |

## DISTRIBUTION LIST

No. of Copies

| PROF. W. M. FIRSCH<br>INSTITUTE OF MATHEMATICAL SCIENCES<br>NEW YORK UNIVERSITY<br>NEW YORK IC453                               | 1  |
|---------------------------------------------------------------------------------------------------------------------------------|----|
| FREF. J. B. KACANE<br>DEFARTMENT OF STATISTICS<br>CAFNEGIE-MELLON<br>FITTS EURCH<br>PENNSYLVANIA<br>15213                       | 1  |
| DR. RICHARD LAU<br>EIFECTOR<br>CFFICE OF NAVAL RESEARCH ERANCH OFF<br>1030 EAST GREEN STREET<br>PASADENA<br>CA 51101            | 1  |
| DF. A. R. LAUFER<br>CIRECTCR<br>CFFICE OF NAVAL RESEARCH BRANCH OFF<br>1030 EAST GREEN STREET<br>PASADENA<br>CA 91101           | ì  |
| PROF. N. LEADBETTER<br>DEPARTMENT OF STATISTICS<br>UNIVERSITY OF NORTH CARCLINA<br>CHAPEL HILL<br>NOFTH CARULINA 27514          | Ţ  |
| ER. J. S. LEE<br>J. S. LEE ASSOCIATES, INC.<br>2001 JEFFERSON DAVIS HIGHWAY<br>SUITE 802<br>ARLINGTON<br>VA 22202               | 1  |
| PREF. L. E. LEE<br>DEPARTMENT CH STATISTICS<br>VIRGINIA HELYTECHNIC INSTITUTE<br>AND STATE UNIVERSITY<br>BLACKSBURG<br>VA 24061 | ]. |
| EFCE. R. S. LEVENWORTH<br>DEPT. OF THUUSTRIAL AND SYSTEMS<br>ENCLOSEDRING OF FLORIDA<br>GAINSWILLE<br>FLORIDA 22011             | 1  |

|                                                                                                                                                              | No. of copies |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| FROF G. LIEPERMAN<br>STANFORD INIVERSITY<br>DEFARIMENT OF GPERATIONS RESEARCH<br>STANFORD CALIFORNIA \$4305                                                  | 1             |
| DR. JAMES R. MAAR<br>NATIONAL SECURITY AGENCY<br>FORT MEADE , MARYLAND<br>20755                                                                              | 1             |
| FPCF. R. H. MAESEN<br>DEPARTMENT OF STATISTICS<br>UNIVERSITY OF MISSEURI<br>COLUMBIA<br>MO<br>65201                                                          | 1             |
| DR. N. R. MANN<br>SCIENCE CENTER<br>ROCKWELL INTERNATIONAL CORFORATION<br>F.C. BOX 1085<br>THOUSAND CAKS<br>CALLEGRNIA SIZEC                                 | 1             |
| PROGRAM IN LOGISTICS<br>PROGRAM IN LOGISTICS<br>THE GEORGE WASHINGTON UNIVERSITY<br>707 22110 STREET, N. W.<br>WASHINGTON, D. C.<br>20037                    | 1             |
| PROF. E. MASRY<br>DEFT. APPLIED PHYSICS AND<br>INFORMATION SERVICE<br>UNIVERSITY OF CALIFORNIA<br>LA JOLLA<br>CALIFORNIA 92093                               | 1             |
| DF. BRUCE J. MCCONALD<br>SCIENTIFIC DIRECTOR<br>SCIENTIFIC LIAISON GROUP<br>DEFICE CF. NAVAL RESEARCH<br>AMERICAN EMBASSY - TOKYC<br>AFC SAN FRANCISCO 96503 | 1             |

1 Dr. Leon F. McGinnis School of Ind. And Sys. Eng. Georgia Inst. of Tech. Atlanta, GA 30332 1 CR. D. R. MCNEIL DEFT. CF STATISTICS PRINCETON UNIV. FRINCETUN NEW JERSEY 08540 CR. F. MOSTELLER STAT. CEPT. HARVARC UNIV. CAMBRIEGE 1 PASSACHUSETTS 02139 DR. H. REISER IEM 1 THOMAS J. WATSCN YCRKTOWN HEIGHTS FES. CTR. NEW YCFK 10598 DR. J. RICREAN DEPT. OF MATHEMATICS ROCKEFELLER UNIV. NEW YORK NEW YORK 1 10021 DR. LINUS SCHRAGE UNIV. CF CHICAGE GRAD. SCHOOL OF BUS. 5826 GREENWECE AVE. CHICAGE, ILLINGIS 1 . 60637 Dr. Paul Schweitzer 1 University of Rochester Rochester, N.Y. 14627 Dr. V. Srinivasan 1 Graduate School of Business Stanford University Stanford, CA. 94305 1 Dr. Roy Welsch M.I.T. Sloan School Cambridge, MA 02139

No. of copies

| No. of | Copies |
|--------|--------|
|--------|--------|

| CR. JANET M. MYHRE<br>THE INSTITUTE OF DECISION SCIENCE<br>FOR BUSINESS AND PUBLIC POLICY<br>CLAREMONT MEN'S COLLEGE<br>CLAREMONT<br>CA 91711 | 1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---|
| MR. F. NISSELSCN<br>BLREAU GF THE CENSUS<br>ROGN 2025<br>FREERAL EUILEINC 3<br>WASHINGTEN,<br>D. C. 2033                                      | 1 |
| MISS B. S. CRLEANS<br>NAVAL SEA SYSTEMS COMMAND<br>(SEA OBF)<br>RM 105C8<br>ARLINGTON VIRCINIA 20360                                          | 1 |
| FROF. C. E OWEN<br>DEPARTMENT OF STATISTICS<br>SOUTHERN METHODIST UNIVERSITY<br>CALLAS<br>TEXAS<br>75222                                      | 1 |
| Prof. E. Parzen<br>Statistical Sceince Division<br>Texas A & M University<br>College Station TX 77843                                         | J |
| DR. A. PETRASOVITS<br>RCCM 207E , FCCC AND ERLG ELDG.<br>TUNNEY'S PASTLRE<br>CTTOWA , ENTARIC KIA-CL2 ,<br>CANADA                             | 1 |
| FRCF. S. L. PFCENIX<br>SIBLEY SCHOOL OF MECHANICAL AND<br>AERGSPACE ENCINEERING<br>CORNELL UNIVERSITY<br>ITHACA<br>NY                         | l |
| DR. A. L. POWELL<br>DIRECTOR<br>CFFICE OF NAVAL RESEARCH BRANCH OFF<br>495 SUMMER STREET<br>BOSTON<br>MA 02210                                | 1 |
| MR. F. R. FRICFI<br>CODE 224 CRESATIONSL TEST AND ONRS<br>EVALUATION FORCE (UPTEVEDR)<br>NORFOLE ,<br>VIRGINIA<br>20300 38                    | 1 |

| DISTRIBUTION LIST                                                                                                               | No. of Copies |
|---------------------------------------------------------------------------------------------------------------------------------|---------------|
| PROF. M. L. PURI<br>DEFT. CF MATHEMATICS<br>P.G. BOX F<br>INCIANA UNIVERSITY FOUNDATION<br>ELCOMINGTON<br>IN 47401              | 1             |
| FROF. H RCPBINS<br>DEFARTMENT OF MATHEMATICS<br>COLUMEIA UNIVERSITY<br>NEW YORK, 10027                                          | 1             |
| PFOF. M ROSENBLATT<br>DEPARTMENT OF MATHEMATICS<br>UNIVERSITY OF CALIFORNIA SAN DIEGO<br>LA JOLLA<br>CALIFORNIA<br>92093        | l             |
| PROF. S. M. RCSS<br>COLLEGE OF ENGINEERING<br>UNIVERSITY OF CALIFORNIA<br>BERKELEY<br>CA 94720                                  | l             |
| PROF. I RUBIN<br>SCHOOL OF ENGINEERING AND AFPLIED<br>SCIENCE<br>UNIVERSITY OF CALIFORNIA<br>LOS ANGELES<br>CALIFORNIA J0024    | 1             |
| PRCF. I. R. SAVAGE<br>DEPARTMENT OF STATISTICS<br>YALE UNIVERSITY<br>NEW HAVEN,<br>CONNECTICUT<br>66520                         | 1.            |
| FRCF. L. L., SCHARF JR<br>DEPARTMENT OF ELECTICAL ENGINEERING<br>COLORACO STATE UNIVERSITY<br>FT. COLLINS,<br>COLORACO<br>E0521 | 1             |
| PRCF. R. SERFLING<br>DEPARTMENT OF STATISTICS<br>FLORIDA STATE UNIVERSITY<br>TALLAHASSEE FLORIDA 22306                          | 1             |
| PROF. N. R. SCHUCANY<br>DEFARTMENT OF STATISTICS<br>SOUTHERN METHODIST UNIVERSITY<br>DALLAS ,<br>TE XAS<br>75222                | 1             |

.

| PROF. C. C. SIEGMUND<br>CEPT. OF STATISTICS<br>STANFORD<br>STANFORD<br>CA 54305                                               | l |
|-------------------------------------------------------------------------------------------------------------------------------|---|
| FRCF. M. L. SEGOMAN<br>DEPT. OF ELECTRICAL ENGINEERING<br>POLYTECHNIC INSTITUTE OF NEW YORK<br>BROCKLYN,<br>NEW YORK<br>11201 | 1 |
| DR. A. L. SLAFKOSKY<br>SCJENTIFIC ADVISGR<br>COMMANDANT OF THE MARINE CORPS<br>WASHINGTON,<br>D. C.<br>20380                  | 1 |
| CR. C. E. SMITH<br>DESMATICS INC.<br>P.C. BCX 618<br>STATE COLLEGE<br>PENNSYLVANIA<br>16801                                   | l |
| PROF. W. L. SMITH<br>DEFARTMENT OF STATISTICS<br>UNIVERSITY OF NORTH CARCLINA<br>CHAPEL HILL<br>NOFTH CARCLINA 27514          | 1 |
| Dr. H. J. Solomon<br>ONR<br>223/231 Old Marylebone R <b>d</b><br>London NW1 5TH, ENGLAND                                      | l |
| MR. GLENN F. STAFLY<br>NATIONAL SECURITY AGENCY<br>FORT MEADE<br>MARYLANO 20755                                               | l |
| Mr. J. Gallagher<br>Naval Underwater Systems Center<br>New London, CT                                                         | 1 |
| Dr. E. C. Monahan<br>Dept. of Oceanography<br>University College<br>Galway, Ireland                                           | 1 |

| No. of Copies |
|---------------|
|---------------|

| DR. R. M. STARK<br>STATISTICS AND COMPUTER SCI.                                                                 | 1 no. or ca |
|-----------------------------------------------------------------------------------------------------------------|-------------|
| UNIV. CF DELAWARE<br>NEWARK<br>DELAWARE<br>19711                                                                |             |
| FROF. RICHARC VANSLYKE<br>RES. ANALYSIS CORP.<br>BEECHWOOD<br>CLD TAFPEN FO/C<br>GLEN COVE, NEW YORK<br>11542   | 1           |
| PRCF. JOHN W. TUKEY<br>FINE HALL<br>FRINCETON UNIV.<br>PRINCETON<br>NEW JERSEY                                  | l           |
| O8540<br>CR. THOMAS C. VARLEY<br>CEFFICE OF NAVAL RESEARCH<br>CODE 434<br>ARLINGTON                             | 1           |
| VA 22217<br>FRCF. G. HATSCN                                                                                     | 1           |
| FINE HALL<br>FRINCETEN UNIV.<br>PRINCETEN<br>NEW JERSEY<br>C8540                                                |             |
| PR. CAVIE A. SWICK<br>ADVANCED PROJECTS GROUP<br>CODE BIC3<br>NAVAL RESEARCH LAB.<br>NASHINGTON<br>CC - 20375   | 1           |
| VR. WENDELL G. SYKES<br>ARTHUR C. LITTLE, INC.<br>ACCRN PARK<br>CAMBRIDGE<br>MA 02140                           | 1           |
| PROF. J. R. THEMPSON<br>DEPARTMENT OF MATHEMATICAL SCIENCE<br>RICE UNIVERSITY<br>HEUSTON,<br>TEXAS<br>77001     | 1           |
| PROF. W. A. THEMPSEN<br>DEFARTMENT OF STATISTICS<br>UNIVERSITY OF MISSOURI<br>COLUMBIA,<br>MISSOURI<br>65201 41 | 1           |

## DISTRIBUTION LIST

|                                                                                                                                  | No. of Copies |
|----------------------------------------------------------------------------------------------------------------------------------|---------------|
| FREF. F. A. TILLMAN<br>DEPT. OF INDUSTRIAL ENGINEERING<br>KANSAS STATE UNIVERSITY<br>MANHATTAN                                   | 1             |
| K\$ <b>6</b> 6506                                                                                                                |               |
| PROF J. L. TUKEY<br>DEFARIMENT OF STATISTICS<br>FRINCETON UNIVERSITY<br>FRINCETON , N. J. 08540                                  | ļ             |
| PROF. A . F . VEINOTT<br>DEFARTMENT OF OPERATIONS RESEARCH<br>STANFORD UNIVERSTITY<br>STANFORD<br>CALIFORNIA<br>94305            | 1             |
| DANIEL H. WAGNER<br>STATION SOLARE DNE<br>FACLI , FENNSYLVANIA<br>19301                                                          | ŗ             |
| PREF. GRACE WAHBA<br>DEFT. OF STATISTICS<br>UNIVERSITY OF WISCONSIN<br>MADISON<br>W1                                             | l             |
| 53706<br>PRCF. K. T. WALLENIUS<br>DEFARTMENT OF MATHEMATICAL SCIENCES.<br>CLEMSON UNIVERSITY<br>CLEMSON,<br>SOUTH CARCLINA 29631 | 1             |
| PROF. BERNARD WIDROW<br>STANFORD ELECTRONICS LAB<br>STANFORD UNIVERSITY<br>STANFORD<br>CA                                        | 1             |
| 94305                                                                                                                            | •             |
|                                                                                                                                  |               |

DISTRIBUTION LIST

•

| OFFICE OF NAVAL RESEARCH<br>SAN FRANCISCO AREA OFFICE<br>760 MAFKET STREET<br>SAN FRANCISCO CALIFORNIA 94102        | .1 |
|---------------------------------------------------------------------------------------------------------------------|----|
| TECHNICAL LIBRARY<br>NAVAL CRENANCE STATION<br>INDIAN HEAD MARYLAND 20640                                           | l  |
| NAVAL SHIP ENGINEERING CENTER<br>PHILADELPHIA<br>DIVISION TECHNICAL LIBRARY<br>PHILADELPHIA PENNSYLVANIA 19112      | l  |
| BUREAU OF NAVAL PRESONNEL<br>DEPARTMENT OF THE NAVY<br>TECHNICAL LIERARY<br>WASHINGTON C. C. 20370                  | l  |
| PRCF. V. AEDE'-HAMEED<br>DEPARTMENT OF MATHEMATICS<br>UNIVERSITY OF NORTH CARCLINA<br>CHARLOTTE<br>NC 28223         | 1  |
| PROF. T. H. ANCERSON<br>DEFARTMENT OF STATISTICS<br>STANFORD UNIVERSITY<br>STANFORD , CALIFORNIA S4305              | 1  |
| PRCF. F. J. ANSCOMBE<br>DEPARTMENT OF STATISTICS<br>YALE UNIVERSITY<br>NEW HAVEN<br>CONNECTICUT C6520               | l  |
| PROF. L. A. ARCIAN<br>INSITIUTE OF INCUSTRIAL<br>ADFINISTRATIEN<br>UNION COLLECE<br>SCHENACIADY .<br>NEW YORK 12308 | l  |



## 

